
1

OpenAI Lunar Lander Learning - Final Project
Selmo Almeida, Jason Peloquin, Jacob Reed

University of Colorado Boulder, Boulder, Colorado
Ann and H.J. Smead Aerospace Engineering Sciences

May 7, 2023

I. INTRODUCTION

The task of placing a lunar lander on the Moon has
always been a challenging problem in the field of robotics
and artificial intelligence. This is due to several factors in-
cluding but not limited to low gravitational force, the lack
of atmosphere, and the Moon having very uneven terrain.
With recent advancements in reinforcement learning, there
has been a growing interest in using these techniques to
solve complex control problems. This paper explores the
use of the Discrete Q-learning and Deep Q-Network (DQN)
reinforcement learning algorithms to land a spacecraft within
the OpenAI gym environment. The approaches involve training
the agent to learn through trial and error, which allow the
agent to learn from it’s own experience and gradually improve
its performance. To evaluate both techniques, learning curves
and reward tracking is provided to compare each methods
effectiveness. Thus, this paper shows the feasibility of using
reinforcement learning to solve complex control problems and
provide knowledge as well as limitations to each of these
reinforcement learning algorithms for placing a lunar lander
on the surface of the Moon in a simplified environment.

II. BACKGROUND AND RELATED WORK

Lunar landings have been studied extensively in robotics and
artificial intelligence communities [2] [3]. One of the biggest
challenges is the high-dimensional state and action spaces,
requiring sophisticated control strategies to successfully (and
safely) navigate and land. Traditional control methods, such as
model-based control, demands precise mathematical modeling
of the system, which is often very complex and difficult to
obtain. This can be computationally expensive and opens the
door for Discrete Q-Learning, DQN, and other reinforcement
learning algorithms to learn optimal policies directly from
data without requiring a model of the system. The abilities
of this category of algorithms has the potential to reduce the
computational time required to learn complex environment
layouts and make decisions based on high-fidelity, modeled
reward structures. These learning strategies can be found
across various applications and have been shown to be highly
successful. From playing Atari games to controlling robotic
arms, this field of study is showing how reinforcement learning
algorithms can revolutionize how we approach dynamical
systems across an extensive range of applications (playing
games, controls, exploration, etc).

III. PROBLEM FORMULATION

The problem to be addressed answers the question of how
can we safely touch down a lunar lander on the Moon’s sur-
face? Due to the ever changing lunar landscape and unknown

distribution of rewards, a heuristic policy was determined
to not be a practical method for safely landing. Though,
in contrast, it was found the designated landing location
remained constant within the environment and was always
set to the center of the generated lunar surface. Thus, for
this project the implemented learning strategies would be
required to seek out paths based on unknown rewards, with
the highest reward designations based on quick and/or gentle
touchdowns. Of course, there is additional complexity within
the problem, which is how the lunar lander was inserted into
the environment. This is seen as a random variable. Thus,
solving this problem was broken into 3 levels of success to
measure learning algorithm effectiveness.

1) (Minimum Working Example) Implement an algo-
rithm such as Q-learning, double Q-learning, SARSA,
or others from scratch and successfully train the lander
to safely touch down on the Moon in a discrete environ-
ment. If this is seen as too simple, randomness will be
injected into the environment in the form of turbulence
or wind which would simulate imperfect burns and
transition uncertainty.

2) (Primary Goal) Use deep reinforcement learning/neural
networks to successfully place the lunar lander on the
Moon’s surface while tuning the neural network with
different hyperparameters. These include but are not lim-
ited to optimizers, loss functions or convolutional layer
complexity to contrast each network’s performance.

3) (Stretch Goal) Utilize liquid neural networks to have
the neural network composition change throughout the
simulation. The dynamic morphing of neuron structure
may improve the lander’s reinforcement learning results.
This approach may be successful due to the lunar lander
having multiple flight regimes based on altitude. Further-
more, a static neural network may not be sufficient to
optimize its landing abilities in each zone. This type of
neural network was developed in recent years to address
autonomous system and computer vision problems.

In addition to the levels of success above, some under-
standing of the State, Action and Reward structures was also
required. For this particular problem, the OpenAI Gym Lunar
Lander environment has the following characteristics [7]:

1) Action Space
• 0: do nothing
• 1: fire left orientation engine
• 2: fire main engine
• 3: fire right orientation engine

2) Observation Space
• X position: [-90, 90]

2

• Y position: [-90, 90]
• X velocity: [-5, 5]
• Y velocity: [-5, 5]
• Angle from horizontal: [−π, π]
• Angular velocity: [-5, 5]
• Left leg in contact with ground (boolean): [0, 1]
• Right leg in contact with ground (boolean): [0, 1]

3) Rewards
• increased/decreased the closer/further the lander is

to the landing pad
• increased/decreased the slower/faster the lander is

moving
• decreased the more the lander is tilted (angle not

horizontal)
• increased by 10 points for each leg that is in contact

with the ground
• decreased by 0.03 points each frame a side engine

is firing
• decreased by 0.3 points each frame the main engine

is firing
• -100 points for crashing, +100 points for landing

safely
Based on the structure above, an episode was considered to

be a solution if it scored at least 200 points.

IV. SOLUTION APPROACH

The two selected learning strategies for this project are
Discrete Q-learning as well as the use of a Deep Q-Network
(DQN). The primary reasons for looking more deeply into
these algorithms was based on flexibility, learning efficiency,
generalization, as well as performance. In terms of flexibility,
Discrete Q-learning and DQN can handle different types of
state-action spaces, making them ideal for solving a wider
range of problems. Additionally, Discrete Q-learning is pre-
ferred for a small and discrete state-action space, while DQN
can handle continuous state spaces and discrete action spaces.
In regards to learning efficiency, these two reinforcement
learning algorithms are able to learn optimal policies through
trial and error, which allows each of these algorithms to
learn from it’s own experiences and improve it’s performance,
which is ideal when solving complex problems such as lunar
landings. Being that lunar landings may likely occur in new
and unseen environments, these Discrete Q-learning and DQN
algorithms are great when learning generalized policies that
can be applied to never-before-seen environments, which is
ideal in real-world scenarios.

In conjunction to the algorithms mentioned above, an ϵ-
Greedy policy was applied to each due to it being a common
exploration strategy. The benefit of using this policy within the
Discrete Q-learning and DQN algorithms is that it balances
exploration and exploitation. This policy is flexible and can
be tuned to either be set to explore for n-steps and commit
from then on, or be set to allow the agent to randomly explore
the environment over the course of its training. In either case,
this allows the agent to discover new actions and learn optimal
policies.

V. DISCRETE Q-LEARNING

This reinforcement learning strategy was implemented from
scratch written in Python and aims to learn Q values via an
incremental estimation update, as seen in Equation 1. The
estimate of Q in Equation 2 is based on finding what the
maximum Q would be in our next state. The exploration policy
chosen was the ϵ-Greedy policy seen in Equation 5. Given
a state, the ϵ-Greedy policy chooses the action that gives
the largest Q value state-action pair with probability 1 − ϵ,
otherwise, it chooses a random action with probability ϵ [1].

Q(s, a)←− Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(1)

Q̂(s′) = r + γmax
a′

Q(s′, a′) (2)

Temporal Difference (TD) = Q̂(s′)−Q(s, a) (3)

ρ =
number of wins
number of tries

(4)

Greedy Strategy: Choose

{
random w.p. ϵ
argmaxa ρa w.p. 1− ϵ

(5)

In order to use this algorithm, the continuous observation
space of the OpenAI Gym Lunar Lander Environment needs
to be discretized. This discretization will undoubtedly lead
to lower performance due to skewing the information about
the lunar lander’s true state. Each state was discretized into
8 values linearly spaced apart between their minimum and
maximum values; except for the boolean observations, where
each has 2 discrete values. The discrete Q-learning Python
class has a method called discretize_state that takes a
continuous state and finds the nearest discrete state.

For the algorithm implementation itself, an episode begins
by resetting the environment, making an observation and
discretizing it, selecting an action based on the ϵ-Greedy
policy, taking a step in the environment using this action,
and then making another observation and discretizing it. Then
Equation 1-3 are used. The algorithm loops like this until
the environment terminates (lander crashes), truncates (lander
drifts outside of box), or the maximum amount of steps is
reached and the environment is reset. All the episodes are run
with the Q-table updating for each episode, then the Q-table
is evaluated with γ = 1.0. This produces a score that shows
the learning curve for the agent.

The following are the parameters used:

• γ = 0.99
• α = 0.01
• ϵ = 0.1
• n episodes = 10, 000

3

VI. DISCRETE Q-LEARNING RESULTS

Our group approached the use of this algorithm with the
expectation it would perform poorly. We noticed that after a
number of episodes, the lander would mostly hover near the
top of the view box and eventually drift either to the left or
right, outside of the viewable space. Figure 1 shows the per-
formance of the Q-learning algorithm after 10,000 episodes.
It learns fairly quickly, but then plateaus at a score of about
-50. It is reasonable to believe the loss in information from the
discretization of the observations along with the maximization
bias present in the Q-learning algorithm negatively impacts
lander results. If we were able to discretize the observation
to more points or possibly implement double Q-learning to
reduce maximization bias, then we may have been able get
better results from a tabular method. Figure 2 shows the results
of the best scoring episode from the Q-learning algorithm. The
agent appears to passably learn how and where to land but it
fails to land soft enough to prevent a crash.

Fig. 1: Q-Learning Curve - 10k episodes

Fig. 2: Best Score Q-Learning Episode

VII. DEEP Q-NETWORK (DQN)

To overcome the inability of tabular Q-learning to success-
fully place the lunar lander on the Moon’s surface in a discrete
form, a deep Q network (DQN) approach was implemented to

accommodate the default continuous state space environment.
Equation 1 through Equation 5 are still utilized in the DQN
approach but their propagation is facilitated through a neural
network and tensor representation versus a tabular form.

1) DQN Structure: A baseline neural network was devel-
oped to promote deep Q-learning and hyperparameter tuning.
The structure of the neural network to be trained is comprised
of an input layer relying on the lunar lander’s current state and
3 fully connected, linear, hidden cortex layers comprised of
200 neurons each. The outputs of the neural network are the 4
thruster actions available to the lunar lander. Located below are
the original neural network parameters used as initial starting
points for further optimization.

• 3 Fully connected hidden layers
• 200 Neurons per layer
• ReLU activation function
• 400 Episodes per epoch
• 1E-4 Learning Rate
• 1E6 Memory Buffer Size
• 1E3 Replay Buffer
• 500 Max Steps per trial run
• 1E-4 Epsilon Decay rate

2) Hyperparameter Analysis: Various hyperparameter
combinations were explored to optimize the lunar lander
problem, however, for brevity only 3 will be discussed in
this paper due to their profound effect on performance. The
hyperparameters in focus with this specific DQN structure
include: the activation function, loss function, and replay
buffer size. Each of these values have an impact on improving
the performance of a DQN model with respect to successfully
placing the lunar lander on the surface, agent learning rate,
computational speed, and model stability. Note that finding
the optimal hyperparameter values can be highly demanding,
requiring careful experimentation and analysis as all of the
neural network hyperparameters work in concert together.
Adjusting one hyperparameter reverberates through all the
other ”tuning knobs” of the model and can lead to unexpected
changes in performance.

3) Activation Functions: For this approach, the ReLU and
Tanh activation functions were selected. ReLU is currently the
industry standard due to it addressing the issue of vanishing
gradients which surface during back propagation. Additionally,
in most cases the implementation of ReLU leads to faster
convergence as it features a fixed linear slope in it’s calculation
and does not rely on exponentiation as Tanh does. Tanh,
although outdated, is still an appropriate choice for hidden
layers of a neural network. Tanh offers the advantages of
ranging from -1 to 1 in it’s output. This allows highly negative
activation values that are produced in the neural network to
persist versus ReLU, which features a lower bound of zero
[5]. This wider range of values may lead the neural network
to articulate neuron activation more delicately. Depictions of
both activation functions are in shown in Figure 3, below.

4

Fig. 3: Activation Functions

In addition to ReLU and Tanh, several other activation
functions were tested, such as Sigmoid and Leaky ReLU.
The Sigmoid function is primarily used for classification tasks
and was inadequate for this particular application and failed
to successfully place the lander on the surface. In contrast,
Leaky ReLU offered comparable results to ReLU and did not
improve the model’s performance, and its implementation is
omitted from this analysis.

VIII. DQN RESULTS

1) Activation Function Results: Both activation functions
proved capable of safely placing the lunar lander on the
surface and achieving a score of 200. Individual simulation
runs for each activation type are shown below in Figure 4.
Both techniques require approximately 400 epochs to achieve
an acceptable score of 200.

(a) ReLU Learning Result

(b) Tanh Learning Result

Fig. 4: Activation Function Learning Curve with MSE Loss

An examination of the corresponding loss curves generated
from both techniques in Figure 5 indicates the ReLU function
minimises losses faster versus Tanh, however, the ReLU
function’s immediate loss minimization does not lead to steady
continuous learning. In contrast, the Tanh activation function
minimizes losses at a leisured pace over time but may result
in more consistent learning as it reduces the realized loss
volatility in later epochs versus ReLU. This subtle difference
became more prevalent as both methods were exposed to
repeated simulation.

(a) ReLU Loss Result

(b) Tanh Loss Result

Fig. 5: Activation Function Loss Curve with MSE Loss

To down select between options, a Monte Carlo analysis
was conducted to assess model stability over multiple trials.
Each technique was simulated 10 times with 400 epochs,
providing insight into individual activation function’s terminal
composite landing score. Terminal composite landing score for
each simulation was calculated by averaging the final 25 scores
produced for each training epoch with results plotted below
in Figure 6. An analysis of these plots indicate that the Tanh
activation function was able to consistently provide a higher
landing score on average versus ReLU. The Tanh activation
function produced 4 terminal average values of above 200
points versus ReLU generating only 1 score above 200 points.
This difference indicates the Tanh model may produce more
stable results over time versus ReLU. To assess computational
efficiency, the elapsed time for each simulation run was logged

5

to create an average computational time for each technique.
The Tanh function produced a slightly lower elapsed time
per simulation averaging approximately 20 minutes and 57
seconds per simulation versus 22 minutes and 18 seconds for
ReLU, making Tanh approximately 6% faster versus ReLU.
The higher scores generated by Tanh paired with its slight
advantage of computational speed led to it being selected as
the activation function of preference for this model. It should
be noted, the improved computational time of Tanh versus
ReLU was unexpected as Tanh relies on exponentiation in
it’s gradient calculation. Exponentiation typically corresponds
to increased computational time. One explanation for this is
the lander may have learned to minimize ”hovering” while
utilizing Tanh, resulting in more aggressive landing approaches
and shorter individual epochs, translating to faster simulation
times.

(a) ReLU Monte Carlo Result

(b) Tanh Monte Carlo Result

Fig. 6: Activation Function Monte Carlo Comparison

2) Loss Functions: Several loss functions were contrasted
to improve on the down selected Tanh model. The loss
functions tested included Mean Square Error (MSE), Mean
Squared Absolute Error (MSAE), SmoothL1Loss and Huber
Loss. For brevity, only two are discussed in depth in this
section, MSE and Huber Loss, highlighted in Equation 6 and
Equation 7. MSE is the most common loss function, taking
an average of the squared error of the model’s prediction
versus ground truth. MSE was utilized for both previous

Monte Carlo scenarios discussed above. The disadvantage of
MSE is if the model makes an abnormally bad prediction of
the best lunar lander next action, the error is magnified due
to the squaring requirement in its formulation. Multiple bad
predictions throughout a training run can significantly impact
model results with MSE in this scenario. Huber loss addresses
the squared error problem by combining MSE and the Mean
Absolute Error (MAE) into a piecewise function. For loss
differences less than a δ threshold, MSE is applied. For outlier
losses, mean absolute error is applied, reducing outlier impact
on model results [4]. A range of δ thresholds were analyzed
with a value of 0.8 producing the highest performance results.

MSE =
1

N

N∑
i

(yi − ŷi)
2 (6)

Huber =
{

1
2 (y − f(x))2 for |y − f(x)| ≤ δ

δ |y − f(x)| − 1
2δ

2 otherwise (7)

Located below are randomly selected training results when
the Huber Loss technique is applied along with a Monte Carlo
analysis of 10 simulations. In contrast to the MSE results
shown in Figure 4 and Figure 5, the Huber Loss function
was able to achieve a score of 200 at approximately 250
epochs versus MSE reaching a score of 200 at approximately
325 epochs. An examination of the loss curves for MSE and
Huber Loss indicate Huber Loss learns slightly slower versus
MSE with a loss convergence occurring at 250 epochs versus
75 epochs for MSE. This slower training may result in a
more viable end result with respect to final model scores. The
Huber Loss technique generated 7 out of 10 terminal value
scores of over 200 points, with many scores approaching 250
points. MSE, in contrast, produced only 3 terminal scores with
values above 200. The three terminal scores which produced
values below 200 points for Huber Loss were anchored around
150 points versus MSE which produced a wide range of
scores between zero and 140 points. Wall clock time was
also analyzed as a performance metric. MSE produced a wall
clock time of 20 minutes and 57 seconds versus Huber Loss
generating a wall clock time of 18 minutes 35 seconds, making
it 11.2 % faster versus it’s MSE counterpart. The higher
terminal value scores paired with less deviation and faster
computational speed make the Huber Loss with a δ value
of 0.8 a superior alternative versus MSE. Huber Loss was
implemented in all further lunar lander optimizations.

6

(a) Huber Loss Simulation Results - Score

(b) Huber Loss Simulation Results - Loss

(c) Huber Loss Monte Carlo Results

Fig. 7: Huber Learning Analysis

3) Replay Buffer Size: To continue model optimization, a
scenario analysis was performed to determine if the default
training batch size of 1,000 observations could improve either
the lunar lander’s end performance or improve computational
speed. To flex this parameter, the default batch size of 1,000
observations was halved to 500. The replay buffer was then
doubled to 2,000 observations and the results were contrasted
to determine if any improvement had occurred. A reduced
batch size of 500 observations produced less standard de-

viation versus the other two alternatives, however, it only
produced 5 terminal value scores of above 200 points. In
contrast the increased batch size of 2,000 only produced 3
terminal scores of above 200 points and introduced signifi-
cant variation in maximum and minimum scores experienced
throughout each simulation as seen in Figure 8. The wall
clock time produced by the smaller batch size of 500 was
16 minutes and 30 seconds whereas the larger batch size of
2,000 required 28 minutes and 54 seconds to run. In contrast to
these scenarios, the batch size of 1,000 performed as expected,
residing within these upper and lower wall clock time bounds
at a time of 18 minutes and 35 seconds. The improved wall
clock time produced by the smaller batch size of 500 does not
out weigh the decrease in performance results generated by
the smaller replay buffer. As a result, the default batch size of
1,000 observations was retained.

(a) Batch: 500 Monte Carlo Results

(b) Batch: 2,000 Monte Carlo Results

Fig. 8: Batch Size Analysis

4) Optimized DQN Structure: After multiple iterations,
the final DQN structure offering the most consistent and
reproducible results is defined below:

• A fully connected neural network
• 3 hidden layers of 200 neurons each
• Activation Function: Tanh
• Optimizer Type: Adam
• Loss Function: Huber Loss δ = 0.8
• Replay Buffer Size:1,000

7

• Learning Rate: 0.001
• Epochs = 400
The neural network defined above was able to consistently

produce results similar to Figure 9a and Figure 9b, below.
Figure 9a shows a time lapse of the initial first exploration
epoch of the lunar lander. The neural network is in its most raw
form in terms of learning during this stage. The lander follows
a random path as the agent begins to explore its environment,
collect experiences and learn from its previous actions. Fig-
ure 9b below highlights a typical landing performed by the
agent once the neural network has been optimized.

(a) Epoch = 1

(b) Epoch = 400

Fig. 9: Untrained (top) and Trained (bottom) Lunar Lander

IX. CONCLUSION

Based on the Discrete Q-Learning and DQN results de-
scribed above, it is concluded Q-learning alone is insufficient
to successfully place the lander on the surface of the Moon.
The information lost during discretization of the environment
leaves gaps of state space knowledge in the agent’s memory,
thus hindering its end performance. This, in essence, would
be the equivalent of attempting to drive a car at highway
speeds based off of photographs taken every half second.
In contrast, the DQN eliminates the need for discretization
and vastly improves the agent’s memory and decision making
capabilities. The Q-table of cataloged experiences created by
the lander in Q-learning is transformed into an intricate neuron
structure capable of storing more complex combinations of
information. This memory structure provides a foundation
for agent learning and allows complex relationships between

the lander’s current state and thrusters to be uncovered and
improved upon, resulting in more successful landing attempts.
The Discrete Q network proved it was capable of improving
over time, however, it’s capabilities plateaued at a score of
approximately -50 points. In contrast, the DQN proved to be
a more capable learner and was more successful in recreating
high scores over time as evidenced by Monte Carlo analysis.
The malleability of the neural network facilitates significant
flexibility in hyperparameter tuning. Changes in individual
hyperparameters produced unique end results in lunar lander
behavior. In this particular scenario, the Tanh activation offered
superior performance in terms of terminal landing scores,
producing 4 out of 10 final scores of approximately 210
points each versus the more commonly used ReLU activation
function, which only produced 1 out of 10 scores above 200
points. Tanh also promoted a more aggressive initial approach
with respect to lunar lander flight path characteristics, resulting
in a faster wall clock times versus ReLU. This end result was
surprising, considering ReLU is an optimized version of Tanh
and removes the need for exponentiation in its calculations.
This would typically promote improved calculation times
during training.

Loss function tuning was another area of the neural network
offering significant results when tuned. In this particular
environment, the standard MSE loss function proved to be
very sensitive to the large negative scores generated by the
lander during either the initial pure exploration phase or the
persistent exploration phase included in the epsilon greedy
strategy. These large negative outliers were magnified due
to the MSE loss function’s requirement of squaring the esti-
mated and observed differences. A Huber Loss technique was
implemented to provide a piecewise loss function capability,
possessing the ability to switch between an MSE loss function
and an MAE function when a δ threshold was surpassed.
After tuning, it was determined a δ value of 0.8 provided
the best results. Furthermore, upon implementing the Huber
Loss technique, the lunar lander’s loss learning curve decayed
to zero much slower versus the pure MSE method. However,
this slower learning rate produced more consistent terminal
landing scores. The Huber Loss technique produced 7 out
of 10 terminal landing scores above the 200 point threshold
versus 4 for the Tanh activation function paired with MSE
alone. Huber loss provided more consistent scoring with less
standard deviation versus MSE and also generated significantly
higher average end values. The average terminal value score
above the 200 point threshold for MSE was 223.7 versus
237.14, providing a 6% improvement in average score along
with 1.3X more success in terms of achieving terminal landing
scores of above 200.

To continue model development, replay buffer size was
also explored under the assumption that a smaller batch size
of lander training experiences would result in faster wall
clock speed while preserving scoring results. Additionally, an
increased batch size was explored to determine if an increased
training memory bank could significantly improve the lander’s
final scores with minimal effect on wall clock time. The Monte
Carlo simulations produced for both the reduced batch size of
500 and increased batch size of 2,000 resulted in decreased

8

lander performance. The reduced batch size of 500 correlated
to an 11% improvement in wall clock time versus the default
batch size of 1,000 experiences, however, this reduction in
batch size introduced significantly worse terminal performance
in the lander’s final scores, producing only 5 scores above
200 points versus the default batch size succeeding 7 times.
The increased batch size of 2,000 also offered inferior results
versus the default value of 1,000. The larger replay experience
bank produced only 3 terminal value scores of above 200
points. Additionally, this decreased performance was coupled
with a 55.5% increase computation elapsed time, making it
the worst option of the 3. After exploration it was determined
the default batch size of 1,000 offered the most consistent
performance for only slightly more computational time versus
the smaller replay memory option.

It should be noted there are many ways to successfully
implement and train a neural network to provide acceptable
results. Significant hyperparameter exploration was required to
generate the end results discussed above. Extensive scenario
analysis of other neural network structures such as hidden
layer number, neuron, count and dropout were also explored
in addition to various activation functions such as Sigmoid,
Leaky ReLU and hybrid networks. Additional optimization
parameters other than ADAM were also implemented such
as Gradient Descent, RMSProp, ADAgrad with no advantages
becoming present in final results. Other more basic parameters
were also varied such as learning rate, agent memory size, and
epsilon decay. However, these changes only deteriorated agent
performance and were omitted from this paper. The flexibility
of neural nets and their ability to accommodate continuous
state space models such as the lunar lander environment allow
the Q-learning algorithm to be implemented in much more
powerful and efficient ways versus it’s original tabular nature.
However, Q-learning provides the framework in which this
model is built and reaffirms it’s continued importance in many
modern reinforcement learning techniques applied today.

X. CONTRIBUTIONS AND RELEASE

• Selmo Almeida - Performed hyperparameter Tuning,
created overleaf organization document, and contributed
to final report.

• Jason Peloquin - Developed DQN algorithm, performed
hyperparameter tuning and analysis, performed Monte
Carlo analysis, and contributed to final report.

• Jacob Reed - Developed Discrete Q-Learning algorithm,
performed Monte Carlo analysis, managed version con-
trol (GitHub development), developed virtual environ-
ment establishment, and contributed to final report.

The authors grant permission for this report to be posted
publicly. The discussed reinforcement algorithm scripts with
workflow and setup instructions can be found at: https://github.
com/reedjacobp/LunarLanderProject.

REFERENCES

[1] M. J. Kochenderfer, T. A. Wheeler, and K. H. Wray, Algorithms for
decision making, 1st ed. Cambridge, MA: The MIT Press, 2022.

[2] A. Scorsoglio, R. Furfaro, R. Linares, and B. Gaudet, “Image-
based deep reinforcement learning for Autonomous Lunar Landing,”
https://arc.aiaa.org/doi/10.2514/6.2020-1910, 10-Jan-2020. [Online]. Avail-
able: https://arc.aiaa.org/doi/abs/10.2514/6.2020-1910. [Accessed: 20-Apr-
2023].

[3] G. Ciabatti, S. Daftry, and R. Capobianco, “Autonomous planetary landing
via Deep Reinforcement Learning and Transfer Learning,” 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 2031–2038, Jun. 2021.

[4] V. Yathish, “Loss functions and their use in neural networks,”
Medium, 04-Aug-2022. [Online]. Available: https://towardsdatascience.
com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9. [Ac-
cessed: 25-Apr-2023].

[5] S. Sharma, “Activation functions in neural networks,” Medium,
20-Nov-2022. [Online]. Available: https://towardsdatascience.com/
activation-functions-neural-networks-1cbd9f8d91d6. [Accessed: 27-Apr-
2023].

[6] S. Potter, “NASA, Northrop Grumman Finalize Moon
Outpost Living Quarters Contract,” NASA, 08-Jul-2021.
[Online]. Available: https://www.nasa.gov/press-release/
nasa-northrop-grumman-finalize-moon-outpost-living-quarters-contract.
[Accessed: 29-Apr-2023].

[7] O. Klimov, ”Lunar Lander,” https://gymnasium.farama.org/environments/
box2d/lunar lander/

https://github.com/reedjacobp/LunarLanderProject
https://github.com/reedjacobp/LunarLanderProject
https://arc.aiaa.org/doi/abs/10.2514/6.2020-1910
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.nasa.gov/press-release/nasa-northrop-grumman-finalize-moon-outpost-living-quarters-contract
https://www.nasa.gov/press-release/nasa-northrop-grumman-finalize-moon-outpost-living-quarters-contract
https://gymnasium.farama.org/environments/box2d/lunar_lander/
https://gymnasium.farama.org/environments/box2d/lunar_lander/

	Introduction
	Background and Related Work
	Problem Formulation
	Solution Approach
	Discrete Q-Learning
	Discrete Q-Learning Results
	Deep Q-Network (DQN)
	DQN Structure
	Hyperparameter Analysis
	Activation Functions

	DQN Results
	Activation Function Results
	Loss Functions
	Replay Buffer Size
	Optimized DQN Structure

	Conclusion
	Contributions and Release
	References

