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ABSTRACT

The purpose of our project was to construct a Helmholtz Coil that generates a uniform
magnetic field strength less than 5% of the Earth’s magnetic field. In addition, two non-contact
sensors were also designed in order to analyze the magnitude and direction of the magnetic field
within the Helmholtz Coil. The design of both the Helmholtz Coil and sensors were analyzed and

implemented using household materials.
INTRODUCTION

The Helmholtz Coil is a classic configuration of using two identical coils of wire to
induce a magnetic field. The design was chiefly named after its curator the German physicist,
Hermann von Helmholtz. The two coils share the same radius and sit symmetrically on the same
axis. The distance of separation between the coils is that of the radius of each coil. A current
shall flow through each coil (both in the same direction) and will create a uniform magnetic field
radially through the space existing between the two coils. The desired effect is a varying
magnetic field which exists between the coils along the axis of symmetry they share (i.e., the z-

axis).
CONSTRUCTION OF INDIVIDUAL COMPONENTS

The apparatus for the Helmholtz Coil is composed of medium-density fiberboard (MDF)
which makes for an excellent insulating material. It consists of a base, two supports, and two
cylinders which are located on the wall supports. The base dimensions are 36.5 cm L x 33.5 cm
W. The wall dimensions are 30 cm H x 28 cm W. The cylinders each have a radius of 12 cm.
The wall supports are separated by 16 cm with a distance of 12 cm from the outside of one coil

to the inside of the other coil. Since the radius of each coil is equal to their distance of separation,



this should help create a uniform magnetic field. The parameters chosen for the apparatus were
based upon having enough space to include sensors. Please refer to Figures 1, 2, and 3 of

Appendix A.

The Earth’s magnetic field, Bgq.¢;, Was found by using the longitude, latitude, and elevation of
Las Vegas using reference #1 to be 48.445uT. The Helmholtz Coil was built using a 5.6V battery
(5.6V instead of 6V since we used it so much for testing purposes), 1.5kQ resistor (measured
using a multimeter), and N = 88 turns per coil. The magnetic field of the system was calculated
using Equation 1 of Appendix B._The coil system was modeled in MATLAB in order to

determine what the magnetic field within our 2cm cylinder would be.

Sensor #1: Solenoid

The first sensor is a homemade solenoid, with a needle placed on the inside to detect the strength
of the field inside the solenoid. Due to current moving through a wire wrapped around a tube, the
current produces a magnetic field inside the solenoid. The field is mostly uniform due to the
geometry of the solenoid since its length is much larger than its radius. Please refer to Appendix

A Figure 5 and Appendix B Equation 3.
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Where Bs is the magnetic field in the solenoid, N, is number of turns around tube, I is current,

and Ls is length of the solenoid.

B, = 108uT, uo=4m* 10~"H/m, Lg=10cm =0.01m, N, = /19 turns
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Using vector addition, we can determine the magnetic field strength of the Helmholtz Coil, based
on the angle of deviation of the needle. The magnitude of the magnetic field strength can also be
determined through geometry by measuring the angle of deviation between the magnetic field of
the solenoid and the Helmholtz coil. We also observe the relationship between the Magnetic

Field B and the current I. B and I are proportional.

Sensor #2: Compass

A compass was designed in order to detect the magnetic field in the region between the
coils. The compass was built using a glass container, a cork, and a needle that had been
magnetized. The magnetized needle was pushed through the center of the cork and placed in the
container of water. A small divot was drilled into the container in order to keep the cork and
needle centered in the glass. The cork was chosen to hold the needle because it floats on water
(less dense than water). Once the needle has been magnetized it acts like a small magnet. Since it
is free to rotate with minimal resistance in the container, the needle can detect the earth’s
magnetic field and align itself to point north. Inside the Helmholtz coil the compass points to
magnetic north when there is no current applied through the wiring of the coil. When the coil is

connected to the 5.6V battery the needle points in the direction of the external magnetic field.
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When 0 is 0° the coil has no current flowing through it and the compass points in the direction of
earth’s magnetic field. As the current through the Helmholtz coil increases so does 6. The net
change in the magnetic field can be found by using vector addition or by measuring the angle of
deviation. The compass points in the direction of the resultant magnetic field between the earth’s
field and the magnetic field generated by applying a current through the Helmholtz coil. Please

refer to Appendix A Figure 4.

Resistor Design:

To create a resistor, you must start with the equation for resistance R = % where A is

the cross-sectional area, L is the length of resistor, and pis the resistivity of the material. We
started by looking at the resistivity of many different wires and found that graphite and kanthal

A-1 wire have high resistivities.

Graphite makes a great resistor but is very unpredictable. The resistance is about 1k€2 per
inch when measured along a straight line. Then we tried diverse types of paper and different
grades of graphite. We noticed that the rougher the paper the less resistance per square inch. The

resistance was also less per square inch with the softer grades of graphite.

Kanthal wire is a material with a lower resistivity than graphite but still relatively high .
This wire is about 1kQ per linch of 32-gauge wire. This material makes a stable resistance value
and changes very little. Andrew used about 16 feet of this wire and tightly wrapped the wire
around a metal rod. The wire was then loosened and was slid off the rod to make a compact
slinky made of kanthal wire to make a total resistance of 266€2. We then cut this up into several

resistors for the solenoid and the Helmholtz coil. Please refer to Appendix A Figure 6.



TESTING AND RESULTS

We first tested our magnetic field with our compass. Prior to placing the compass in
between the two coils, the needle in our compass, floating in water, was magnetized in order to
point towards magnetic north. The Helmholtz Coil was oriented to where the magnetic field
vector between the coils was perpendicular to that of the Earth’s magnetic field. When placed
inside the Helmholtz Coil, the orientation of the needle is rotated due to a torque by the force

produced by our two coils. This verified proper performance of the coil.

Using our equations, we constructed the Solenoid to create a magnetic field that is twice
the amount of the field produced by our Helmholtz Coil. In theory and based on vector addition,
if the field in the solenoid is twice the amount of the Helmholtz Coil, with fields aligned
perpendicularly, the needle inside our solenoid rotates to a 22.5° angle. Observing our needle in
demonstration, we are not at this angle although we do assume this is due to torsion in the thread

holding the needle.

CONCLUSION

Using only household materials, we were able to apply our knowledge of magnetostatics
to create a functioning Helmholtz coil, a homemade resistor, and two sensors detecting our field
inside our coil. Based on calculations we designed a Helmholtz coil to function within less than
5% of the earth’s magnetic field. We used our theory and equations to create a working
Helmbholtz coil (above the Earth’s Magnetic Field), and with our sensors we were able to
measure the strength of our field. The greatest challenges of our project was taking our equations
for the coil and field and implementing those results into our design while remaining within the

constraints required for the design.
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Appendix A: Photos

Figure 1: Helmholtz Coil Version 1 Figure 2: Helmholtz Coil Version 2

Figure 3: AutoCAD rendering of apparatus Figure 4: Sensor 1 - Compass
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Figure 5: Sensor 2 - Solenoid

Figure 6: Resistors

Figure 8: Cody McDonald with the design of
apparatus

Figure 7: Jacob Reed with the design of apparatus



Figure 9: Moriah Wingrove with design of compass

Figure 10: Elizabeth Heider with design of solenoid

Figure 11: Andrew Buchanan with design of resistors

Figure 12: From left to right - Cody, Jake, Moriah, Liz,
Andrew



Appendix B: Lengthy calculations and MATLAB Simulations

Helmholtz Coils Calculations — Coil 1 and Coil 2
Coil 1 has N; turns of current filament, radius a;, and is located in the z = d; plane

Coil , has N, turns of current filament, radius a,, and is located in the z = d, plane

Solving for the magnetic flux density in the top coil at a point p off the z-axis:

B(rp) o x Ag(7)

. o [Ie, d,
d4, = =2 —=2
17 47| R
. I dl
B(Tp) VP ClR &

Field in the z-axis does not equal zero
Where the current in Coil ;depends on the current and number of filaments

IC1 = IlNl

Solving for dfsl

dly, = dry, #(@s) + 15, d9s@ (@) + dzy, 2
drslf'((ps) =0
dzg 2 =0
dly, =15, des@ (@)

T‘S =a1

1

disl = aldqosqﬁ(gos)

Solving for R:




N =

R=|R"R|

-
J— 'rs

R =

=

7y = nyf(@p) + 2p2
Ts = 157 (@s) + 252
Using
rs=a,and z;, = d,
s = a7 (@) + dq2
R = 1,7(9,) + 2p2 — (a,7(ps) + dy2)
R= rpf(gpp) + zp2 — a;7(@s) — di2

R= rf(@p) — a1 (@s) + (zp, — dy)2
R = |rpf'((pP) - alf'(q)s) + (Zp - dl)ZA' [rpf((pp) - alf'((Ps) + (Zp - dl)ZA]P
R = ([rpf(‘Pp) ' rpf(gﬂp)] + [Tpf"(gpp) ' _alf(‘»os)] + [rp?((pp) ' (Zp - dl)ZA]

+ [_alf-((ps) ' Tpf'(QDP)] + [_alf(gps) ' _al?(gas)] + [_alf((ps) ' (Zp - dl)ZA]
+[(2p — d1)2 17 ()] + [(2p — d1)2 - —as7(95)]

+ [z - d1)2- (2 — d)2])?

R =[r,2 —2a;m, (#(0,)  #(9) + s + (2, — d)’]

|#(s)| cos(a)

Pop) 705 = [#(0p)
Where a is the angle between (¢, ) and #(¢s)



?((pp) _ (95
Qv

/ (ps)

Ps

Pp

f'(gop) Pps) = COS(q’p - (ps)

Plugging this back into R gives

1
R = [rpz +a,? — 2ay1, cos(@, — @) + (2, — d1)2]2

The calculated values of R,dfsl, I, were plugged back into the magnetic flux density equation

I1Nya,dos§(Ps)

SN 5 M
B(rp)szxﬁ T

[sz +a,2 — 2ay1, cos(9p — @) + (2 — dl)z]E



B( p) _ 011N1a1f dpsp(Ps)

= [rpz + a2 — 2ay1, cos(@, — @) + (2, — all)z]E

In order to perform the cross product @ () must be a function of p:

P(@s) = AP(¢p,) + Bo(p) + C2

P(@s) ﬂ #(ep)

- Qs
Q0 f((Ps)

@ / Ps

v

Pp
A= @(q)s) : f'(q)p)

= |¢’(‘ps)||f'((pp)| COS(“)
Where a is angle between §(¢,)and §(¢s)

T
= cos <E - ((pp - (ps)>
Using the identity of:
Cos(G-F) = cos(G)cos(F)+sin(G)sin(F)



cos (5= (00 = ) = cos () cos(ay — )+ sin () s, ~ )
cos (Z) =0
sin(3) =1
cos G —(¢p — <ps)> = sin(p, — @s)

A= sin(<pp — (ps)

B = @(st) : @(Qpp)

B = cos(gop — <ps)

C= @(QBS) 2z
C=0
P(9s) = sin(g, — ¢s5) #(@,) + cos(p, — @5) &(0,)

Plugging ®(¢;) as a function of ¢, back into magnetic flux density equation

( p) — :uOIlNlalj 1—7;9 % Sin((pp - q’s) f'(gop) + COS(§0p - ‘ps) (f)(‘pp) . d )

¢s=0 [rpz +a,2 = 2a47, cos((pp — @) + (zp — dl)z]z

Solving for the cross product:

The cross product for cylindrical coordinates is given by the following equation:
d0A 1[d(r,A d0A
Zl 70 B zlﬁr_[(p o) l
14

or, 0@,
5 sin(p = @5) (@) + cos(gp — ¢5) 9(#p)
P

1 dA,
6<pp

_>

e -
XA=r

1
[rpz + a,% — 2a4m, cos(<pp — (ps) + (zp — dl)]2



The cross product was solved using the following relations

A = sin(g, — @s) 1
o1k
[rpz +a,2 — 2ay1, cos(@, — @) + (2, — dy) ]2

A, = cos(p, — @)

1
[rpz +a,? = 2a;7, cos((pp — @) + (Zp - d1)2]2

A, =0

l oL la(rpAq,) ~ aArl

L 94, . . [0A,
X A= r((pp) I_ El i go((pp) [azp er an, 0oy

Solving for 7(¢,) [— ‘:‘T"’ ;
p

0z, 0z

0A —
#(0) l 0 9 cos(p, — @s)

1
[rpz + a,? = 2a;7, cos((pp —ps) + (zp — d1)2]2

Where:

1
s d
A <[rp2 +a,% — 2a1my, COS(Q”p - %) + (zp — d1)2]2> <_azp (cos(pp — (Ps))>
@
= +

(')Zp , % 2
“rpz +a,? = 2a41y, cos((pp — <ps) + (zp - dl) ] l

1
a —_—
—cos(¢y — 02) E(W a? = 2a,r, cos(gy — 93) + (2, — d1)2]2>

+

1 2
“sz + a2 — 2a;1, cos(p, — @) + (2, — dl)z]zl

1
1 1
0A, — cos(@p — s) (7) [rpz + a2 — 2a;1, cos(@p, — @s) + (2, — dl)z] 2 (2)(z, — dy)

0 2
% [rp2 + a,% — 2a;7, cos(<pp — (ps) + (zp — d1)2]2




94, - cos((pp - <Ps)(zp ~ dl)

d )2]%
o [rpz +a;? = 2ay1, cos(pp — @5) + (2, — dy

57(¢p)
272
2+ a2 — 247 cos((pp —@s) + (Zp — dy) ]

~7(¢p) [

. cos(py ~ 9. ~ )
0z, [

— 94, |,
Solving for g(¢,) [E ;

. 04,]
600 527 -
p
94 ) sin(, — @)
r —
aZp azp

1
212
[sz +a,2 = 2a,17, cos(@p — @5) + (2, — dy) ]

1
212 0 . _
[rpz +a,? = 2a;1, cos(9, — @s) + (2p — di) ] Esm(gap #s)
0A,

+
1 2
= o
T e -raneoton o)+ o]
1
272
0 — —¢5) + (2, — dy) ]
— Sln((pp — (ps) a [sz + a12 Zalrp COS((pp s) 1p2
+ ¥
“sz + a2 — 2ay1, cos(, — @) + (2, — dy) ] l
1
212
‘ A 22 rcos<p—<p)+(zp—d1)]
OAT_ —sm((pp—gos)a[rp +a; a1 ( P s -
0z, B

2712
[rpz +a,? = 2a41, COS(‘Pp - ‘/’S) + (Zp - dl) ] l

—

1
— — 5) |+ — 2a4m - + —d,)’] 2 —-d
sin(<p 1) )G) [ 52+ a? = 2a4 pcos(gop (ps) (zp d1) ] (2)(zp 1)
aAr 14 S

d )2]%
7 [rpz +a1? = 2a31 cos(@p — @) + (2, — dy



04, — sin(<pp - <ps) (Zp - dl)
0z,

3
P [rpz + a2 — 2ay1, cos(@, — @) + (2, — dl)z]z

@ (¢p) [gﬂ = —sin(, — ¢5) (2, — d1)
p

3
[rpz +a,2 — 2a;1, cos(@p, — @s) + (2, — d1)2]2

. |1 0(rpA -|1 0A
Solving for Z [—M -z [——r]
Tp 09y

Tp Tp

Solving for the first partial derivative:

1o(a,) 10 [ sy cos(py — 02 \
T ar; N

Y T, 0T 2 %
[sz +a,% — 2a;m COS((pP - ('05) + (Zp B dl) ]

1
2 0
a(rpAq,) [T'p2 +a,? — 2a;11 COS(<Pp - ‘Ps) + (Zp — dl)z]z E(Tp COS((pp — (ps))

or,

142 T

hrpz +a,% — 2a47 COS(%? - ('05) + (Zp B dl)z]il

1
) cos((pp — ws)(?%([rpz + a12 — 2a1rp cos(<pp — <ps) + (Zp - d1)2]2>

+

1 2
“sz + a2 — 2a;1, cos(p, — @) + (2, — dl)z]zl

1
a(rpA(p) ~ cos(<pp - <ps) [rpz +a,% = 2a47, cos((pp - <ps) + (zp — dl)z]2
omy [rpz + a2 — 2ay1, cos(@p, — @s) + (2, — dl)z]

1
1 _L
—1, cos(@p — @s) (7) (21, — 2a, cos(@, — ¢5)) [rpz + a2 — 2ay1, cos(gp — @s) + (2, — dl)z] 2

[rpz + a,? — 2a;7, cos(cpp — ;) + (Zp - dl)z]




_ cos(@p — @s) 4

r [rpz + a2 — 2,1, cos(@p, — @s) + (2, — dl)z]E

L1 a(rpA<p)
ZE ary

o —rcos(oy = 0) (5~ a cos(y )
3

7 [rpz + a2 — 2451, cos(@, — @) + (2, — dl)z]i

Solving for the second partial derivative:

104, 1 0 / sin(, — @) \

ga‘f’p - Ea% \[

1
1% + a,2 — 2a;1, cos(@, — @5) + (2, — d1)2]2

1
2\ 0 .
A ([rp2 + a2 — 2ay1, cos(g, — @) + (2, — d1)2]2>_6g0 (sin(p, — ¢5))
ro_ p +

0 112
Pp ¥
“rpz + a2 — 2ay1, cos(@, — @) + (2, — dy) ] l

1

. d 2
—sin(p, — @s) 30, ([rpz + a2 — 2a;1, cos(@p, — ¢s) + (2, — d1)2]2>
+

1 2
l[rpz + a2 — 2ay1, cos(p, — @) + (2, — dl)z]zl

1
04, cos(q)p — @s) [rpz +a,® = 2a47, cos(<pp — @) + (Zp - dl)z]z N
o [rpz + a,% — 2a;7, cos(<pp — ;) + (Zp - d1)2]

1
1

s —sin(@, — @s) (7) [rpz +a,? — 2ay1, cos(@, — @) + (2, — dl)z]_i (2ay7, sin(@, — ¢5))

[rpz +a,? = 2a41y, cos(gop —ps) + (zp — dl)z]

0A, cos(gop - <ps)

6<pp

1
[rpz +a,? = 2a41y, cos(gop —ps) + (zp — d1)2]2

—a1, sin(<pp - <ps)2

+ 3
[rpz + a2 — 2a;7, cos(<pp - (ps) + (zp - d1)2]2



L loA —cos (¢, — ¢;) _

Ty [sz +a,% — 2a;m, cos(<pp — (ps) + (zp — dl)z]7

N a1y, sin(gop — (ps)2

3
T [rPZ +a,% — 2a;m, cos((pp — <p5) + (Zp — d1)2]2

Putting the cross-product parts together:

S 04,] 04,1 _1[d(r,4,) 04,
T x4 =7(00) [_@ +9(0s) [azp * ZE[ or, oy
I — —d
7, x A= cos(¢p — ¢s) (zp — da) ~7(p,) +

[rpz + alz — zalrp COS((pp - (Ps) + (Zp - dl)z]z

—sin(@, —@s)(z, — d .
+ ( 14 S)( 4 1) 3<,0(<,0p)+

[sz + a12 - Zalrp COS((pP - <Ps) + (ZP o dl)z]i

N cos((pp — (ps)

5
TZ+

Ty [rpZ +a,% — 2a,1, cos((pp — <ps) + (Zp — dl)z]E

o —tocos(y = 05) 0~ ascos(py ~ 0,))

§z”+
Ty [rpZ +a,% — 2a,1, cos((pp — <ps) + (Zp — dl)z]z

N cos((pp - (ps) i+

Ty [rpZ +a,% — 2a41, cos((pp — <ps) + (zp — dl)z]E

N —a1, sin(gop — (ps)z

>
3Z

Ty [sz +a,% — 2a41, cos(gop — <ps) + (zp — dl)zF



Putting the cross-product result into magnetic flux density equation:

o INaL m cos(@, — @s) (2, — d
B(rp):lio Z,Tl 1|T(<Pp)f . (90 — 95) (2 — d) 2§d<Ps
| #s= [rpz + a2 — 2ay1, cos(@p, — @s) + (2, — dy) ]2
. o —sin(@, — @) (z, — d
+(,0(<Pp) ) ( p S)( p 1) §d<Ps
#s=0 [rpz + a2 — 2ay1, cos(@, — ) + (2, — dl)z]z

T dQs

2

qun COS(QDp - 905)

T, :sz + a,? = 2a;7, cos(gop —@s) + (Zp - dl)z:

. 2]27{ —1, cos(p, — @s) (1, — ay cos(@, — ¢5) ) do,
#s=0 1 2 + a2 — 2y, cos(@, — @5) + (2, — dl)z 2
21 — —

N 2] cos(p, — @s) o,
#s=0 1 2 + a2 — 2451, cos(@, — @5) + (2, — dl)z 2

L[ a1, sin(@p, — @ ?

+ Zj 1'p ( p 5) - d(ps

@s=0

The equation was simplified to obtain the final form of the magnetic flux density at a point off the
z-axis for the top coil.



- LN
B(?p) _ Ho anal

3495
2 + a,? — 2a;7, cos(@, — @) + (2, — d1)2]2

(o) f:’;[ s, =) (5, )

|
N ‘ﬁ(‘ﬂp)f _Sin(‘l’p - ‘/’S) (Zp - dl) _do,

" [sz + a2 — 2a;1, COS(‘/’p — ) + (ZP - dl)z]z
s 212” —T cos((pp — ¢s) (Tp —a COS(‘Pp - 95))
®s=0

3 APs
r [rpz + a2 — 2a;1, cos(@p — @) + (2, — d1)2]§

|
3490s
T [rpz + a,2 — 2a31, cos(@, — @s) + (Zp - dl)z]z

QJZ” a1, sin(q)p — <,05)2
=0

It |S ObSGFVEd that N1 = Nz, 11 = 12 = I, d1 = dz = d, a; = a2:a

Equation #1:
~. .\ MoINal, m cos(p, — ¢s) (2, — d
B(#,) = °4n r(<pp)j By (0 =) (zp = d) 37d9s
s= [rpz + a2 — 2ar, cos(@, — ¢s) + (2, — d)z]2
. 2r —sin(@, — @) (z, — d
oo [ G-0)Crmt)
¢s=0

B [rpz + a? — 2ar, cos(@, — ¢s) + (2, — d)z]E

X Zon —1, cos(@, — ¢s) (r, — acos(g, — ¢5) ) do,
#s=0 r [rpz + a? — 2ar, cos(@, — @s) + (2, — d)z]2
, 2
X Zf2n ar, sin(@, — @) do,
@s=0

7 [rpz + a? — 2ar, cos(gop — @)+ (zp — d)z]E

Equation 2:
48.445 % 107° % 0.05 = Bso,praren

Bso.gearth = 2.42uT

Helmholtz Coil MATLAB Implementation, Code and Graphs

Referenced formulas for the implementation of the MATLAB code obtained from “General
Relation for the VVector Magnetic Field of a Circular Current Loop” by Dr. Robert Schill.



Taylor Expansion for Elliptic Integral:

N T2, 9T 4
K(A,)~2+8L, +128A'
‘ 4ar
T T . 3 k2 = c
E(k)z‘———kz——l.:“ c = P ERVE
278 128 where (re +a)? + (2 = z0)

Magnetic field for R and Z components using the above expansion:

tole (=)
2 re[(re +a)? + (z = 2,)2]V/2

_wrr '?'(2,+(L2+(z—z(,)2 . :|
|~k + =2 g

By (re, g,

o

(BI)
ﬂ'UIU
27[(re + a)? + (z — 2,)2]1/?

. r2—a?+ (2 — 2,)? e
‘ |:A (!‘r‘] B (T(‘ - ”5)2 + (’7 - 20)2 E(A‘)jl )
(B2)

B:(re, p, 2) =




%EE33@0 Helmholtz coil Matlab
%Using taylor expansion of elliptic integral for matlab integration
%Scompatibility

% create global value for permeability of free space
global u@
ul=4%pixle-7;

% Set parameters for our model

N = 88; %Coil turns

Io= 0.0035; %Coil current in Amps (We adjust current to .@9A for equivalent earth's magw
field)

a=.12; %Coil radius in meters

% Assign the center of each coil their own coordinate positions
xpl=0; ypl=0@; zpl=0; % coil 1
Xp2=0; yp2=0; zp2=a; % coil 2

% Create axis' where we will observe the Magnetic Field

% z and y coordinates are broken into 25 values and observed from
%(-0.01:0.01) for y and (0.05:0.07) for z

x=0;

[y,z]=meshgrid(linspace(-0.01,0.01,25), linspace(®.05,0.07,25));

% setting up radial components
rcl=((x-xpl)."2+(y-ypl).”2).".5; %magnitude of radial vector
rc2=((x-xp2).”2+(y-yp2).72).".5; %magnitude of radial vector

% Set parameters for using Elliptic Integrals
kl=(4.*xa.*xrcl).x(((rcl+a).”2)+((z-zpl).”2)).~(-1); %This is a parameter for calculating«
the Elliptical integrals

kEliptl=(pi/2)+(pi/8).*k1+(9%pi/128).%k1l.”2; %taylor expansion of the K ellipticalv
integral.

eEliptl=(pi/2)+(-pi/8) .xk1+(-3%pi/128).%k1l.72;%taylor expansion of the E ellipticalw
integral.

k2=(4.xa.*rc2).x(((rc2+a).”2)+((z-zp2).”2)).~(-1);
KElipt2=(pi/2)+(pi/8) .*k2+(9%pi/128).%k2.72;
eElipt2=(pi/2)+(-pi/8) .xk2+(-3*pi/128).%k2."2;

% Calculate the radial component for each loop
Bri=(u@.*N.*I0./(2.%pi.*rcl)).x(z-zpl).x((((rcl+a).”2)+((z-zpl).”2)) ...

A(=.5)) .k (-kEliptl+eEliptl.#((rcl.”2+a.”2+(z-zpl).”2)./(((rcl-a).”2)+((z-zpl).”2)))); %v
radial component of B

Br2={(u@.*N.*I0./(2.%pi.*rc2)).x(z-zp2).x(({(rc2+a).”2)+((z-zp2)."2}) ...
A(=.5)) .k (-kElipt2+eElipt2.#((rc2.”2+a.”2+(z-2zp2).”2)./(((rc2-a).~2)+((z-zp2).”2)))); %v
radial component of B

% Calculate the z component for each loop
Bz1=(u@.*N.*I0./(2.%pi)).*x((((rcl+a).”2)+((z-zpl).”2))."(-.5)).x(kEliptl-eEliptl.* ...
((rcl.”2-a.”2+(z-zp1).”2)./(({rcl-a).”2)+((z-zpl).”2)))); %Z component of Bl

Bz2=(u@.*N.*I0./(2.%pi)).*((((rc2+a).”2)+((z-2zp2).72))."(-.5)).%(KElipt2—eElipt2.* ...
((rc2.72-a.”2+(z-zp2).72)./(({rc2-a).”2)+((z-2zp2).72)))); %Z component of B2

% Obtain the cartesian components from the radial components of Brl,2



Bx1=Brl.*(x-xpl)./rcl;
Byl=Brl.x(y-ypl)./rcl;

Bx2=Br2.%(x-xp2)./rc2;
By2=Br2.*(y-yp2)./rc2;

% Add all components together
Bx=Bx1+Bx2;
By=By1+By2;
Bz=Bz1+Bz2;

% eliminate any instances of infinite
Bx(isnan(Bx)) = @ ;By(isnan(By)) = @ ;Bz(isnan(Bz)) = 0 ;

% Calculate the magnitude of the vector for graphability
B_mag=sqrt(Bx.”2+By.”2+Bz."2);

% Plot

figure

surf(y,z,B_mag)

title('Magnetic Field Magnitude Less Than 5%')
xlabel('Zp")

ylabel('Rp"')

zlabel('Bz")

Magnetic Field Magnitude Less Than 5%
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Graph of magnetic field magnitude when coil intensity is equal to 5% of the magnetic field of
Earth’s.



Magnetic Field Magnitude Equal to Bearth

x10°

Graph of magnetic field magnitude when coil intensity is equal to the magnetic field of Earth’s.

Solenoid Matlab Code and Graphs

Solenoid Theory using Ampere’s Circuital Law

H is in same direction as dl in order to survive dot product
L
f Hdx = I{Ng
0

H(L - 0) = LN,

HL = I N,
— N,
H =
- L—>
B == ‘U()H

Equation 3:

- I.N,

B = UolslNg



%solenoid B vs I

%bs is mag field of solenoid

%U is permittivity of core
%L is length of solenoid

%N is number of turns

%I is current

%V is voltage of battery
%R 1s resistor connected to solenoid
V = 5.6

R = 167

N = 115

I =V/R

u = 4xkpixl0~-7

L =0.1

Is = 0:0.001:1

B = (uxNxIs)/L

figure(1)

plot(B)

title ("B vs I")

xlabel ("I (amps)")
ylabel ("B (tesla)")
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10 |
0.5 N
0 . ! ! ! !
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| (amps)

Graph of B vs | for the solenoid



Compass MATLAB Code and Graphs

clc; clear all; close all;

Bearth = 48.445 x 10 ~ -6; %Magnetic field of earth at UNLV
Bwire = (48.445 x 10 ~ -6) * 0.05; % 5% of magnetic field in our coil

d_angle = atand(Bwire/Bearth);

fprintf('The magnetic field of the earth at UNLV is (in Teslas): %d\n', Bearth)
fprintf('\n")

fprintf('5 percent of the magnetic field in our wire must be less than (in Teslas): %«
d\n', Bwire)

fprintf('\n"')

fprintf('The compass must not deviate more than (in degrees): %f\n', d_angle)

%Create vectors for magnetic fields of Earth, the coil, and the compass
po = [0 0];

pl = [0 Bearth];

vectarrow(p@,pl)

hold on

p2 = [0 0];
p3 = [Bwire 0];
vectarrow(p2, p3)

hold on
pd = [0 0];
p5 = [2.4%10"-6 Bearth];

vectarrow(p4, p5)
hold on

%include vector to set scaling of y-axis

p6 = [0 0];

p7 = [Bearth 0];

vectarrow(p6,p7)

hold on

title('Compass Deviation Due To Helmholtz Coil')

ylabel( 'Magnetic field of Earth')
xlabel( 'Magnetic field of Coil')

Output of code:
The magnetic field of the earth at UNLV is (in Teslas): 4.844500e-05
5 percent of the magnetic field in our wire must be less than (in Teslas): 2.422250e-06

The compass must not deviate more than (in degrees): 2.862405
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Graph of the Compass deviation due to the coil and Earth’s magnetic field. We see the compass
must not deviate past 2.86°.

Resistance Calculations:

clc; clear all

Rol = 1.44e-6; %the resistivity of the Kanthal A-1 wire

L1 = 1.7111; %length of wire in meters

Al = 3.2e-8; %cross sectional area of a 32 guage wire (32nm)

Kanthal_Resistance = (Rol*L1)/Al %this is the resistance of the Kanthal resistor

Ro2 = 60e-5; %resistivity of graphite

L2 = 0.095; %length of graphite resistor

A2 = 0.000000038; %a very thin sheet of graphite on paper (approximated based off
%of multimeter measurement)

o

Graphite_Resistance = (Ro2 * L2) / A2 %resistance of graphite on paper resistor

Kanthal_Resistance =

76.9995



Graphite_Resistance =

1.5000e+03
Note: The cross-sectional area of the graphite resistor is approximate since it is difficult to

measure.



