

UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.
Class: CPE 200L – Digital Logic Design II Semester: Spring 2019

Points Document author: Jacob Reed, Tanner Tindall, Alula Mena

 Author's email: reedj35@unlv.nevada.edu
tindat1@unlv.nevada.edu
menaa1@unlv.nevada.edu

Document topic: Final Project Report

Instructor's comments:

1. Introduction / Theory of Operation

For the final project, our group wanted to focus on something that had to do with VGA
output; and to do it in SystemVerilog. It is difficult enough to get something to properly display
on a screen using the DE2 board in conjunction with its VGA output. When it comes to
SystemVerilog, none of the members of this team had any experience with the language. We
learned that it is not very different from Verilog, however, it will still be a challenge to output to
a display. Using the VGA output, we will be creating a game; in which the user will be able to
use the switches on the DE2 board in order to play. The game is called “Fireman” and the
objective of the game is to work your way through a screen filled with red blocks to reach the
water block. Once the player block has reached the water block, the “fire” has been put out, the
player earns 1 point, and then the fire and water blocks reappear in different positions on the
screen. If the player touches any of the red blocks, the screen will turn red, and the player must
reset and lose all points.

2. Technical Points

Understanding VGA

❖ Before creating our game, we must first understand how to display it on the screen. The
FPGA contains an onboard Video Graphics Array (VGA) port which allows for the
connection between itself and the screen.

➔ The VGA contains 15 ports which are each
responsible for the color data as well as the
timing control. (Right)

mailto:reedj35@unlv.nevada.edu
mailto:tindat1@unlv.nevada.edu
mailto:menaa1@unlv.nevada.edu

❖ The “Array” is what is known as the screen. One box within the array is known as a
pixel. Together, these pixels form a screen that is 800 pixels wide and 525 pixels long.
However, the “Active Region” is the part of the
screen that we actually see and interface with. The
remaining part of the screen is comprised of 3
areas known as the Front/Back Porch and H or V
sync which is responsible for synchronization and
resetting of the scan line. (Right)

❖ For an image to appear, a scanline runs across the
screen (x) from left to right transmitting the color
data to each pixel. Once it has completed a row, it
then resets and moves down 1 pixel (y) then
proceeds to move across the row. Once it has
reached the bottom right pixel it has completed one frame. This process occurs 60 times
every second to produce a video image. The images below display the length of time for
each of the scanlines movements within the screen.

Note:​ The VGA timing system (Pixel Freq.) operates at 25MHz.

Software Code/Design

Timing:

❖ The DE2 operates at a frequency of 50MHz (T = 20ns) and must, therefore, be divided in
half to match that of the VGA timing at 25MHz. The code below is a clock divider.

➔ Below is a Quartus simulation of the clock divider.

Drawing & Color:

❖ We must now begin to draw the player (Fireman).

➔ To do this, we set the following condition. This
process is repeated for the fire blocks as well.
(Below)

➔ Now, we must define the color of the player and
fire tiles. (Right)

Note:​ Coloring is completed in the same manner

for all other objects.​in the game.

Movement & Reset:

❖ Now that we have successfully been able to
display an image of the blocks, and more
specifically the player, we must implement a code
that would allow the player to move the Fireman.
This action is completed by adding 4 pixels in
front of and behind of the player tile in the
direction indicated. This continuous adding and
subtracting of pixels make it seem as though the
player is moving around the screen in 2
dimensions. (Right)

❖ Once the player has collected

the water tile, a short delay
occurs to prevent player
movement during the
transition of the fire blocks.
This small addition assists in
the player's experience and
prevents any unintentional loss
of the game to occur. Once the
pause is completed, the payer
is then allowed to move once
again. (Right)

❖ If the user decides to reset the
game to begin again, the
following code is responsible
for applying the fixed
coordinate positions of each fire
tile in the first round of the
game. (Right)

Player Boundaries:

❖ In our game, if the player decides to move off screen, we have implemented the
following code (right) which allows for the player to reappear on the exact opposite side
of the screen they are exiting from. The image on the
left simply provides a reference for how the active
part of the screen is displayed.

Overlap Check:

❖ Once the player has collected the water tile, the water tile, and fire tiles immediately
reappar randomly on the screen. However, there is a chance that the location of a water
tile and reappear the location of a water tile collide thereby making it impossible to
collect and move on. To alleviate this issue the
code below checks for the location of bothering
the water and fire tile and if they overlap, then
redraw the screen. (Right) Otherwise, the screen
remains and the player continues with the map
layout.

Hosing Down the Fire:

❖ Now that the map has been created, a water tile places and a player that can move, we can
finally begin to dive into the entire objective of the game; Hosing down the fire by
collecting as much water as possible. The following code works by checking to see if 1
pixel of the player tile is sensed inside of the water tile. Once the player touches the water
tile, the game immediately begins to redraw the map and add 1 to the player score.

Game Over:

❖ For the player to lose, their fireman block collides with any one of the the fire tiles. The
screen then immediately turns red indicating to that player that the game is over. The
code works by detecting if a fire tile and player tile has collided and then proceeds to
display the color red in all dimensions of the screen.

Starting Screen

❖ The image to the right displays the starting

screen of Fireman. This screen is the only
fixed portion of the map since all other
levels in the game are randomly generated.

Displaying Score

❖ Points are awarded each time the player has successfully able to collect a water tile. This
score is then immediately displayed to two 7-segment displays on the DE2 Board
allowing the player to reach a max score of 99 points. The following image shows the
player has 5 points (left) and later on in the game, 15 points (right).

3. Encountered Problems

Since the members of our group had very little prior experience with SystemVerilog,
doing the game itself was the most difficult part. It required quite a large amount of time
researching how to go about implementing our ideas and translating them into code. Debugging
took the largest amount of time in this project as some areas were extremely specific on syntax
and placement of certain “if” statements. Another difficulty of our was trying to get the colors
themselves to actually display on the screen. Another issue was figuring out the proper input for
the controls as the DE2 board was not intended for hardcore gaming. Initially we had used the
buttons but decided to move to switches after believing the buttons were causing a debouncing
effect. However, once we realized our mistake with the button inputs, we were easily able to fix
the code and redeclare the buttons as the input controls for our game. Simulations randomness
for all aspects of the game become difficult as it required the use of several counters which
meant more variables for our code increasing its overall complexity. Finally, the one issue we
were unable to fix due to a lack of time was small, but the annoying fact that the fire blocks had a
chance of randomly spawning on top of the player tile moving the game to Game Over.

4. Conclusions

In conclusion, this lab provided tremendous difficulty in overcoming basic debugging
such as fixing logic flow, syntax, etc. This project was even more difficult due to the fact that
none of us had any experience with SystemVerilog. Therefore, we were each required to conduct
our own research on the subject. Although it took a great deal of time, we are more than happy
with the end result and look forward to improving the game.

